
Polyspace® Code Prover™
Getting Started Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Getting Started Guide
© COPYRIGHT 2013–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)
March 2016 Online Only Revised for Version 9.5 (Release 2016a)
September 2016 Online Only Revised for Version 9.6 (Release 2016b)
March 2017 Online Only Revised for Version 9.7 (Release 2017a)
September 2017 Online Only Revised for Version 9.8 (Release 2017b)
March 2018 Online Only Revised for Version 9.9 (Release 2018a)
September 2018 Online Only Revised for Version 9.10 (Release 2018b)

Introduction to Polyspace Code Prover
1

Polyspace Code Prover Product Description 1-2
Key Features . 1-2

Related Products . 1-3
Polyspace Bug Finder . 1-3
Polyspace Products for Verifying Ada Code 1-3
Tool Qualification and Certification . 1-3

Polyspace Verification . 1-4
Polyspace Verification . 1-4
Value of Polyspace Verification . 1-4
How Polyspace Verification Works . 1-6

Get Started with Polyspace Code Prover
2

Compiler Requirements . 2-2

Run Polyspace Code Prover on C/C++ Code 2-3
Run Polyspace in User Interface . 2-3
Run Polyspace on Windows or Linux Command Line 2-7
Run Polyspace in Eclipse . 2-8
Run Polyspace in MATLAB . 2-8

Review Polyspace Code Prover Analysis Results 2-11
Interpret Results . 2-11
Address Results Through Bug Fix or Comments 2-13
Manage Results . 2-15

v

Contents

Configure Server for Remote Verification and
Polyspace Metrics

3
Set Up Polyspace Analysis on Remote Server 3-2

Choose Between Local and Remote Analysis 3-2
Requirements for Remote Analysis . 3-2
Configure and Start Server . 3-4
Configure Client . 3-8
Set Up Server for Multiple Polyspace Releases 3-9

Set Up Polyspace Metrics . 3-10
Requirements for Polyspace Metrics 3-10
Configure and Start Polyspace Metrics Server 3-11
Configure Client Side . 3-12
Configure Web Server for HTTPS . 3-14
Change Web Server Port Number for Metrics Server 3-15

Install Polyspace Plugins
4

Install Polyspace Plugin for Simulink . 4-2

Install Polyspace Plugin for Eclipse . 4-4
Install Polyspace Plugin for Eclipse IDE 4-4
Uninstall Polyspace Plugin for Eclipse IDE 4-6

Verify Code in IBM Rational Rhapsody Environment
5

Verify Code in IBM Rational Rhapsody Environment 5-2
Code Verification Approach . 5-2
Adding Polyspace Profile to Model . 5-3
Accessing Polyspace Features . 5-3
Configuring Verification Options . 5-6
Running a Verification . 5-7

vi Contents

Viewing Polyspace Results . 5-7
Locating Faulty Code in Rhapsody Model 5-8
Template Configuration Files . 5-9

Polyspace Bug Finder and Polyspace Code Prover
6

Choose Between Polyspace Bug Finder and Polyspace Code
Prover . 6-2

How Bug Finder and Code Prover Complement Each Other . . 6-2
Workflow Using Both Bug Finder and Code Prover 6-8

vii

Introduction to Polyspace Code
Prover

• “Polyspace Code Prover Product Description” on page 1-2
• “Related Products” on page 1-3
• “Polyspace Verification” on page 1-4

1

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace Code Prover™ is a sound static analysis tool that proves the absence of
overflow, divide-by-zero, out-of-bounds array access, and certain other run-time errors in
C and C++ source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses semantic analysis and abstract
interpretation based on formal methods to verify software interprocedural, control, and
data flow behavior. You can use it on handwritten code, generated code, or a combination
of the two. Each operation is color-coded to indicate whether it is free of run-time errors,
proven to fail, unreachable, or unproven.

Polyspace Code Prover also displays range information for variables and function return
values, and can prove which variables exceed specified range limits. Results can be
published to a dashboard to track quality metrics and ensure conformance with software
quality objectives. Polyspace Code Prover can be integrated into build systems for
automated verification.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features
• Proven absence of certain run-time errors in C and C++ code
• Color-coding of run-time errors directly in code
• Calculation of range information for variables and function return values
• Identification of variables that exceed specified range limits
• Quality metrics for tracking conformance with software quality objectives
• Web-based dashboard providing code metrics and quality status
• Guided review-checking process for classifying results and run-time error status
• Graphical display of variable reads and writes

1 Introduction to Polyspace Code Prover

1-2

Related Products
In this section...
“Polyspace Bug Finder” on page 1-3
“Polyspace Products for Verifying Ada Code” on page 1-3
“Tool Qualification and Certification” on page 1-3

Polyspace Bug Finder
For information about Polyspace Bug Finder™ , see https://www.mathworks.com/
products/polyspace-bug-finder/.

Polyspace Products for Verifying Ada Code
For information about Polyspace products that verify Ada code, see the following:

https://www.mathworks.com/products/polyspaceclientada/

https://www.mathworks.com/products/polyspaceserverada/

Tool Qualification and Certification
You can use the DO Qualification Kit and IEC Certification Kit products to qualify
Polyspace Products for C/C++ for DO and IEC Certification.

To view the artifacts available with these kits, use the Certification Artifacts Explorer.
Artifacts included in the kits are not accessible from the MathWorks® web site.

For more information on the IEC Certification Kit, see IEC Certification Kit (for ISO 26262
and IEC 61508).

For more information on the DO Qualification Kit, see DO Qualification Kit (for DO-178).

 Related Products

1-3

https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspace-bug-finder/
https://www.mathworks.com/products/polyspaceclientada/
https://www.mathworks.com/products/polyspaceserverada/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/iec-61508/
https://www.mathworks.com/products/do-178/

Polyspace Verification

In this section...
“Polyspace Verification” on page 1-4
“Value of Polyspace Verification” on page 1-4
“How Polyspace Verification Works” on page 1-6

Polyspace Verification
Polyspace products verify C, C++, and Ada code by detecting run-time errors before code
is compiled and executed.

To verify the source code, you set up verification parameters in a project, run the
verification, and review the results. A graphical user interface helps you to efficiently
review verification results. The software assigns a color to operations in the source code
as follows:

• Green – Indicates that the operation is proven to not have certain kinds of error.
• Red – Indicates that the operation is proven to have at least one error.
• Gray – Indicates unreachable code.
• Orange – Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an
error in the source code. After you fix errors, you can easily run the verification again.

Value of Polyspace Verification
Polyspace verification can help you to:

• “Enhance Software Reliability” on page 1-5
• “Decrease Development Time” on page 1-5
• “Improve the Development Process” on page 1-6

1 Introduction to Polyspace Code Prover

1-4

Enhance Software Reliability

Polyspace software enhances the reliability of your C/C++ applications by proving code
correctness and identifying run-time errors. Using advanced verification techniques,
Polyspace software performs an exhaustive verification of your source code.

Because Polyspace software verifies all executions of your code, it can identify code that:

• Never has an error
• Always has an error
• Is unreachable
• Might have an error

With this information, you know how much of your code does not contain run-time errors,
and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification software to
check that your code complies with established coding standards, such as the MISRA C®,
MISRA® C++ or JSF® C++ standards.1

Decrease Development Time

Polyspace software reduces development time by automating the verification process and
helping you to efficiently review verification results. You can use it at any point in the
development process. However, using it during early coding phases allows you to find
errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To verify the
source code, you set up verification parameters in a project, run the verification, and
review the results. This process takes significantly less time than using manual methods
or using tools that require you to modify code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source code. After
you fix errors, you can easily run the verification again.

Polyspace verification software helps you to use your time effectively. Because you know
the parts of your code that do not have errors, you can focus on the code with proven (red
code) or potential errors (orange code).

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace Verification

1-5

Reviewing code that might have errors (orange code) can be time-consuming, but
Polyspace software helps you with the review process. You can use filters to focus on
certain types of errors or you can allow the software to identify the code that you should
review.

Improve the Development Process

Polyspace software makes it easy to share verification parameters and results, allowing
the development team to work together to improve product reliability. Once verification
parameters have been set up, developers can reuse them for other files in the same
application.

Polyspace verification software supports code verification throughout the development
process:

• An individual developer can find and fix run-time errors during the initial coding
phase.

• Quality assurance engineers can check overall reliability of an application.
• Managers can monitor application reliability by generating reports from the
verification results.

How Polyspace Verification Works
Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained in the Polyspace verification are true for all executions of the
software.

What is Static Verification

Static verification is a broad term, and is applicable to any tool that derives dynamic
properties of a program without executing the program. However, most static verification
tools only verify the complexity of the software, in a search for constructs that may be
potentially erroneous. Polyspace verification provides deep-level verification identifying
almost all run-time errors and possible access conflicts with global shared data.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

1 Introduction to Polyspace Code Prover

1-6

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation.
For instance, the model of i is that it belongs to the static interval [0..999]. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborate
models are also used for this purpose).

By definition, an approximation leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact is
that this information is not required to ensure that no range error will occur; it is only
necessary to prove that the domain variation of i is smaller than the range of tab. Only
one check is required to establish that — and hence the gain in efficiency compared to
traditional approaches.

Static code verification has an exact solution. However, this exact solution is not practical,
as it would require the enumeration of all possible test cases. As a result, approximation
is required for a usable tool.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification works
by performing upper approximations. In other words, the computed variation domain of a
program variable is a superset of its actual variation domain. As a result, Polyspace
verifies run-time error items that require checking.

 Polyspace Verification

1-7

Get Started with Polyspace Code
Prover

• “Compiler Requirements” on page 2-2
• “Run Polyspace Code Prover on C/C++ Code” on page 2-3
• “Review Polyspace Code Prover Analysis Results” on page 2-11

2

Compiler Requirements
Polyspace fully supports the most common compilers used to develop embedded
applications. If you compile your code with one of these compilers, you can run analysis
simply by specifying your compiler and target processor. See the full list of compilers on
the reference page for option Compiler (-compiler).

If you do not compile your code using a supported compiler, you can specify a generic
compiler. If you face compilation errors from compiler-specific language extensions, you
can explicitly define these extensions to work around the errors. Use the options
Preprocessor definitions (-D) and Command/script to apply to
preprocessed files (-post-preprocessing-command).

2 Get Started with Polyspace Code Prover

2-2

Run Polyspace Code Prover on C/C++ Code
Polyspace Code Prover is a sound static analysis tool that proves the absence of overflow,
divide-by-zero, out-of-bounds array access, and certain other run-time errors in C and C+
+ source code. A Code Prover analysis produces results without requiring program
execution, code instrumentation, or test cases. Code Prover uses semantic analysis and
abstract interpretation based on formal methods to determine control flow and data flow
in the code. You can use Code Prover on handwritten code, generated code, or a
combination of the two. In the analysis results, each operation is color-coded to indicate
whether it is free of run-time errors, proven to fail, unreachable, or unproven.

You can run Code Prover on C/C++ code from the Polyspace user interface, in a
supported development environment (IDE) such as Eclipse™ or using scripts. See:

• “Run Polyspace in User Interface” on page 2-3
• “Run Polyspace on Windows or Linux Command Line” on page 2-7
• “Run Polyspace in Eclipse” on page 2-8
• “Run Polyspace in MATLAB” on page 2-8

To follow the steps in this tutorial, copy the files example.c and include.h from
matlabroot\polyspace\examples\cxx\Code_Prover_Example\sources to
another folder. Here, matlabroot is the MATLAB® installation folder, for instance, C:
\Program Files\MATLAB\R2018b.

Run Polyspace in User Interface
Open Polyspace User Interface

Double-click the polyspace executable in matlabroot\polyspace\bin. Here,
matlabroot is the MATLAB installation folder, for instance, C:\Program Files
\MATLAB\R2018b.

Alternatively, you can open MATLAB. In the Apps tab, click the Polyspace Code Prover
app.

 Run Polyspace Code Prover on C/C++ Code

2-3

Add Source Files

To run a verification, you have to create a new Polyspace project. A Polyspace project
points to source and include folders on your file system.

On the left of the Start Page pane, click Start a new project. Alternatively, select File >
New Project.

After you provide a project name, on the next screens:

• Add your source folder.

In this tutorial, add the path to the folder in which you saved the file example.c. Click
Next.

• Add your include folder.

In this tutorial, add the path to the folder in which you saved the file include.h. This
folder can be the same as the previous folder. Click Finish.

2 Get Started with Polyspace Code Prover

2-4

After you finish adding your source and include folders, you see a new project on the
Project Browser pane. Your source folders are copied to the first module in the project.
You can right-click a project to add more folders later. If you add folders later, you must
explicitly copy them to a module.

Configure and Run Polyspace

You can change the default options associated with a Polyspace analysis.

Click the Configuration node in your project module. On the Configuration pane,
change options as needed. For instance, on the Coding Rules & Code Metrics node,
select Check MISRA C:2004.

 Run Polyspace Code Prover on C/C++ Code

2-5

For more information, see the tooltip on each option. Click the More help link for
context-sensitive help on the options.

To start verification, click Run Code Prover in the top toolbar. If the button indicates
Bug Finder, click the arrow beside the button to switch to Code Prover.

Follow the progress of verification on the Output Summary window. After the
verification, the results open automatically.

Additional Information

See:

• “Add Source Files for Analysis in Polyspace User Interface”

2 Get Started with Polyspace Code Prover

2-6

• “Run Polyspace Analysis on Desktop”

Run Polyspace on Windows or Linux Command Line
You can run Code Prover from the Windows® or Linux® command line with batch (.bat)
files or shell (.sh) scripts.

Use the polyspace-code-prover-nodesktop command to run a verification.

To save typing the full path to the command, add the path matlabroot\polyspace\bin
to the Path environment variable on your operating system. Here, matlabroot is the
MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2018b.

Navigate to the folder where you saved the files (using cd). Enter the following:

polyspace-code-prover-nodesktop -sources example.c -I . -results-dir . -main-generator

Here, . indicates the current folder. The options used are:

• -sources: Specify comma-separated source files.
• -I: Specify path to include folder. Use the -I flag each time you want to add a

separate include folder.
• -results-dir: Specify path where Polyspace Code Prover results will be saved.
• Verify module or library (-main-generator): Specify that a main function

must be generated if not found in the source files

After verification, the results are saved in the file ps_results.pscp. You can open this
file from the Polyspace user interface. For instance, enter the following:

polyspace ps_results.pscp

Instead of specifying comma-separated sources directly on the command line, you can list
the sources in a text file (one file per line). Use the option -sources-list-file to
specify this text file.

Additional Information

See:

 Run Polyspace Code Prover on C/C++ Code

2-7

• “Run Polyspace Analysis from Command Line”
• polyspace-code-prover-nodesktop

Run Polyspace in Eclipse
If you develop code in Eclipse or an Eclipse-based IDE, you can run Code Prover directly
from your IDE.

After installing the Eclipse plugin on page 4-4, you can run Polyspace directly on the
files in your Eclipse projects.

In the Project Explorer pane in Eclipse, select your project. To use Code Prover for the
analysis, select Polyspace > Code Prover. To start the analysis, select Polyspace > Run
(Ctrl + R).

After analysis, the results open automatically in Eclipse.

Additional Information

See “Run Polyspace Analysis in Eclipse”.

Run Polyspace in MATLAB
To run Polyspace, use a polyspace.Project object. The object has two properties:

• Configuration: Specify the analysis options such as sources, includes, compiler and
results folder using this property.

• Results: After analysis, read the analysis results to a MATLAB table using this
property.

To run the analysis, use the run method of this object.

To run Polyspace on the example file example.c in matlabroot\polyspace\examples
\cxx\Code_Prover_Examples\sources, enter the following at the MATLAB command
prompt.

2 Get Started with Polyspace Code Prover

2-8

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'example.c')};
proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(matlabroot,...
 'polyspace', 'examples', 'cxx', 'Code_Prover_Example', 'sources')}
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');
cpResults = proj.Results.getResults('readable');

After verification, the results are saved in the file ps_results.pscp. You can open this
file from the Polyspace user interface. For instance, enter the following:

resultsFile = fullfile(proj.Configuration.ResultsDir,'ps_results.pscp');
polyspaceCodeProver(resultsFile)

Additional Information

See:

• “Run Polyspace Analysis by Using MATLAB Scripts”
• polyspace.Project
• polyspace.Project.Configuration Properties

 Run Polyspace Code Prover on C/C++ Code

2-9

See Also

Related Examples
• “Review Polyspace Code Prover Analysis Results” on page 2-11
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

2 Get Started with Polyspace Code Prover

2-10

Review Polyspace Code Prover Analysis Results
Polyspace Code Prover checks C/C++ code exhaustively and proves the absence of
certain types of run-time errors (static analysis or verification). Whatever means you use
for running the analysis, afterwards, you open the results in the Polyspace user interface
(or if you ran the analysis in Eclipse, the results open in Eclipse).

To follow the steps in this tutorial, run Polyspace using the steps in “Run Polyspace Code
Prover on C/C++ Code” on page 2-3. Alternatively, in the Polyspace user interface, open
example results using Help > Examples > Code_Prover_Example.psprj. If you have
loaded the example results earlier and made some changes, to load a fresh copy, select
Help > Examples > Restore Default Examples.

Interpret Results
Review each Polyspace result. Find the root cause of the issue.

Start from the list of results on the Results List pane.

• If the Results List pane covers the entire window, select Window > Reset Layout >
Results Review.

• If you do not see a flat list of results, but instead see them grouped, from the list,
select None.

Click the Family column header to sort the results based on how critical they are. Select
the red Illegally dereferenced pointer check in the file example.c. A red check
indicates that the error happens on all execution paths considered in the analysis.

 Review Polyspace Code Prover Analysis Results

2-11

See the source code on the Source pane and further information about the result on the
Result Details pane.

For the Illegally dereferenced pointer result, the message on the Result Details pane
indicates that the pointer p has an allowed buffer of 400 bytes. It points to a location that
begins at 400 bytes from the beginning of the buffer and points to a data type of 4 bytes.

To investigate further and find the root cause of the issue, right-click the variable p on the
Source pane and select Search For All References. Click each search result to navigate
to the corresponding location on the source code. At each location, place your cursor on
the variable p to see a tooltip that describes the variable value at that point in the code.

2 Get Started with Polyspace Code Prover

2-12

You see that the pointer variable p is initialized to a 100-element int array. The pointer
traverses the array in a for loop with 100 iterations and points to the end of the array. On
the line with the red Illegally dereferenced pointer check, this pointer is dereferenced,
resulting in dereference of a memory location outside the array.

Additional Information

See:

• “Interpret Polyspace Code Prover Results”
• “Code Prover Result and Source Code Colors”
• “Polyspace Code Prover Results”

Address Results Through Bug Fix or Comments
Once you understand the root cause of a Polyspace finding, you can fix your code.
Otherwise, add comments to your Polyspace results to fix the code later or to justify the
result. You can use the comments to keep track of your review progress.

Right-click the variable p on the Source pane. Select Open Editor. The code opens in a
text editor. Fix the issue. For instance, you can make the pointer point to the beginning of
the array after the for loop. Changes to the code are highlighted below.

 Review Polyspace Code Prover Analysis Results

2-13

...
int i, *p = array;

for (i = 0; i < 100; i++) {
 *p = 0;
 p++;
}

p = array;

if (get_bus_status() > 0)
...

If you rerun the analysis, you do not see the red Illegally dereferenced pointer check.

Alternatively, if you do not want to fix the defect immediately, assign a status To
investigate to the result. Optionally, add comments with further explanation.

If you assign a status No action planned, the result does not appear in subsequent runs
on the same project.

2 Get Started with Polyspace Code Prover

2-14

Additional Information

See:

• “Address Polyspace Results Through Bug Fixes or Comments”
• “Annotate Code and Hide Known or Acceptable Results”

Manage Results
When you open the results of a Code Prover analysis, you see a list of run-time checks,
coding rule violations or other results. To organize your review, you can narrow down the
list or group results by file or result type.

For instance, you can:

• Review only red and critical orange checks.

Click the Family column header to sort checks by color. Alternatively, you can filter

out results other than red and orange checks. To begin filtering, click the icon on
the column header.

 Review Polyspace Code Prover Analysis Results

2-15

You can review only the path-related orange checks because they are likely to be more
critical. To filter out other checks, use the filters on the Information column. Clear
the All filter and then select the filter Origin: Path related issue.

• Review only the new results since the last analysis.

On the Results List pane toolbar, click the New button.
• Review results in certain files or functions.

On the Results List pane toolbar, from the list, select File.

Additional Information

See:

• “Filter and Group Results”
• “Prioritize Check Review”

2 Get Started with Polyspace Code Prover

2-16

Configure Server for Remote
Verification and Polyspace Metrics

• “Set Up Polyspace Analysis on Remote Server” on page 3-2
• “Set Up Polyspace Metrics” on page 3-10

3

Set Up Polyspace Analysis on Remote Server
You can perform a Polyspace analysis locally on your desktop or on a remote server. This
topic shows how to set up Polyspace on a server for remote analysis.

Choose Between Local and Remote Analysis
To determine when to use local or remote analysis, use the rules listed in this table.

Type When to Use
Remote Source files are large (more than 800 lines of code including

comments) and execution time of analysis is lengthy.
Local Source files are small and execution time of analysis is short.

Requirements for Remote Analysis
A typical distributed network for running remote analysis consists of these parts:

• Client nodes: On the client node, you configure your Polyspace project or scripts, and
then submit a job that runs Polyspace.

• Head node: The head node distributes the submitted jobs to worker nodes.
• Worker node(s): The Polyspace analysis runs on a worker node.

3 Configure Server for Remote Verification and Polyspace Metrics

3-2

In the simplest remote analysis configuration, the same computer can serve as the head
node and worker node. You can run one Polyspace analysis on one worker only. You
cannot distribute the analysis over multiple workers. If you submit more than one analysis
job, you can distribute the jobs over multiple workers.

This table lists the product requirements for remote analysis.

Location Requirements
Client node • MATLAB

• Parallel Computing Toolbox™
• Polyspace Bug Finder or Polyspace Code Prover (whichever product

you choose to run)
Head node and
worker nodes
(server side)

• MATLAB Distributed Computing Server™
• Polyspace Bug Finder
• Polyspace Code Prover (if you choose to run Code Prover)

 Set Up Polyspace Analysis on Remote Server

3-3

Configure and Start Server
On the computers that act as the server (head node and worker nodes), configure and
start the mdced service through the Metrics and Remote Analysis Server Settings dialog
box.

To open this dialog box, go to matlabroot\polyspace\bin. Here, matlabroot is the
MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2018b. Double-
click the executable polyspace-server-settings.

Alternatively, you can open this dialog box from the Polyspace user interface. Select Tools
> Remote Analysis Server Settings.

3 Configure Server for Remote Verification and Polyspace Metrics

3-4

Configure Cluster with One Worker

You can use the same computer as the head node and worker node.

1 Select Use the Polyspace mdce service without security level.

The mdced service runs by default with security level 0. At level 0, jobs are
associated with the default user name of the user. A login or password is not required
to manage and see these jobs.

You can also use these options:

• Mdce service port — The default port is 27350.

This option specifies the port that the mdced service uses for server-client
communication. If you change this number, you must change it on both the server
and client side. On the client side, when you specify the job scheduler host name
(Tools > Preferences and then Server Configuration), specify the port by using
the notation hostName:portNumber. For instance, ah-jdoe:27400.

• Use secure communication – Not selected by default.

To encrypt communication between the job scheduler and workers, select this
option.

2 To start the mdced service, click Start Server.

The service uses the settings specified in the file polyspace_mdce_def.bat
(Windows) or polyspace_mdce_def.sh (Linux) in matlabroot\toolbox
\polyspace\psdistcomp\bin. Here, matlabroot is the MATLAB installation
folder, for instance, C:\Program Files\MATLAB\R2018b.

The software stores the information that you specify in the Metrics and Remote Server
Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf
• On a Linux system, /etc/Polyspace/polyspace.conf

You can also set up this computer to act as the Polyspace Metrics server. Before clicking
Start Server, select the Use Polyspace Metrics server box. For details, see “Set Up
Polyspace Metrics” on page 3-10.

 Set Up Polyspace Analysis on Remote Server

3-5

Configure Cluster with Multiple Workers

To configure a cluster with multiple workers, you must start the mdced service on all
computers that act as worker nodes. To set up multiple workers, use the MATLAB
Distributed Computing Server Admin Center.

You can also use this approach if you want to require authentication to use the remote
server. For more information about setting up security levels for authentication, see “Set
MJS Cluster Security” (MATLAB Distributed Computing Server).

To set up this configuration, on the computer that acts as the head node:

1 Open the Metrics and Remote Analysis Server Settings dialog box.
2 Click Admin Center.

3 Configure Server for Remote Verification and Polyspace Metrics

3-6

3 In the Hosts section, add the host names of all computers that you want to use as
head and worker nodes of the cluster. Start the mdced service.

The service uses the settings specified in the file matlabroot\toolbox\distcomp
\bin\mdce_def.bat. Here, matlabroot is the MATLAB installation folder, for
instance, C:\Program Files\MATLAB\R2018b.

 Set Up Polyspace Analysis on Remote Server

3-7

4 Right-click each host. Select either Start MJS (head node) or Start Workers (worker
nodes).

The hosts appear in the MATLAB Job Scheduler or Workers section. In each
section, select the host and click Start to start the MATLAB Job Scheduler or the
workers.

Selecting a computer as host starts the mdced service on that computer. You must have
permission to start services on other computers in the network. For instance, on
Windows, you must be in the Administrators group for other computers where you want
to start the mdced service. Otherwise, you have to start the mdced services individually
on each computer that acts as a worker.

For more details and command-line workflows, see:

• “Integrate MATLAB Job Scheduler (MJS)” (MATLAB Distributed Computing Server)
• mdce

Configure Client
Configure the client node so that it can communicate with the computer that serves as the
head node of the MDCS cluster.

Configure the client node through the Polyspace environment preferences:

1 Select Tools > Preferences.
2 Click the Server Configuration tab. Under MATLAB Distributed Computing

Server cluster configuration:

a In the Job scheduler host name field, specify the computer for the head node
of the cluster. This computer hosts the MATLAB job scheduler (MJS).

If the port used on the computer hosting the MJS is different from 27350, enter
the port name explicitly with the notation hostName:portNumber.

b Due to the network setting, the job manager may be unable to connect back to
your local computer. If so, enter the IP address of the client computer in the
Localhost IP address field.

3 Configure Server for Remote Verification and Polyspace Metrics

3-8

Set Up Server for Multiple Polyspace Releases
You can run jobs from multiple releases of Polyspace (for instance, R2016a and R2016b)
on the same server.

• Install both releases of Polyspace and the later release of MATLAB Distributed
Computing Server on the server.

• Edit the file mdce_def.bat or mdce_def.sh (located in matlabroottoolbox
\distcomp\bin\) to refer to the earlier release. For instance, to refer to a R2016a
release, find the line with MDCS_ADDITIONAL_MATLABROOTS and edit it like this:

set MDCS_ADDITIONAL_MATLABROOTS=C:\Program Files\MATLAB\R2016a

Start the mdced service from MATLAB Distributed Computing Server Admin Center. See
“Configure Cluster with Multiple Workers” on page 3-6.

Once you start the Job Scheduler on the server, from your client nodes, you can submit
jobs from both Polyspace releases to the same cluster.

See Also

Related Examples
• “Set Up Polyspace Metrics” on page 3-10
• “Run Polyspace Analysis on Remote Clusters”
• “Job Manager Cannot Write to Database”
• “Integrate MATLAB with Third-Party Schedulers” (MATLAB Distributed Computing

Server)
• “Troubleshoot Common Problems” (MATLAB Distributed Computing Server)

 See Also

3-9

Set Up Polyspace Metrics
Polyspace Metrics is a web dashboard that generates code quality metrics from your
verification results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

This topic shows how to set up a Polyspace Metrics server to store Polyspace results.

Requirements for Polyspace Metrics
You can use Polyspace Metrics to:

• Store verification and analysis results.
• Evaluate and monitor software quality metrics.

This table lists the requirements for Polyspace Metrics.

Task Location Requirements
Project configuration
and uploads to
server

Client node • MATLAB
• Polyspace Bug Finder or Polyspace Code Prover

Polyspace Metrics
service

Network
server or
head node
of MATLAB
Distributed
Computing
Server
cluster

• MATLAB
• Polyspace Bug Finder or Polyspace Code Prover

Activation is not required for the Polyspace Metrics
service

3 Configure Server for Remote Verification and Polyspace Metrics

3-10

Task Location Requirements
Downloading
complete results
from Polyspace
Metrics

Client node
or a
network
computer

• MATLAB
• Polyspace Bug Finder or Polyspace Code Prover
• Access to Polyspace Metrics server

Viewing results
summary from
Polyspace Metrics

A network
computer

Access to Polyspace Metrics server.

You cannot merge two different Polyspace metrics databases. However, if you install a
newer version of Polyspace on top of an older version, Polyspace Metrics automatically
updates the database to the newest version.

Configure and Start Polyspace Metrics Server
This section shows you how to start the host server for Polyspace Metrics. After you
complete this step, you must also configure the client side settings so that the Polyspace
interface can interact with the Metrics server.

1 From the Polyspace environment, select Tools > Remote Analysis Server Settings.

Note In Linux, you need root privileges to start the Polyspace Metrics server.
2 Under Polyspace Metrics Settings, select Use Polyspace Metrics server.

Specify this information:

• User name used to start the service — Your user name.
• Password — Your password (Windows only).
• Communication port — Polyspace communication port number (default 12427).

This number must be the same as the communication port number specified in the
Polyspace Interface preferences. See “Configure Client Side” on page 3-12.

• Folder where analysis data will be stored — Results repository for Polyspace
Metrics server.

3 If you do not also want to run the analysis on a server (using a MATLAB Distributed
Computing Server cluster), clear the Start the Polyspace mdce service without
security level check box. Otherwise, when you start a server, the server doubles as a
Polyspace Metrics server and an MDCS server for running analysis.

 Set Up Polyspace Metrics

3-11

For information about starting your MDCS server, see “Set Up Polyspace Analysis on
Remote Server” on page 3-2.

4 To start the Polyspace Metrics server, click Start Server.

Note If you are using a Mac as your Polyspace Metrics server, when you restart the
machine, you must restart the Polyspace server.

The software stores the information that you specify through the Metrics and Remote
Server Settings window in the following file:

• On a Windows system, \%APPDATA%\Polyspace_RLDatas\polyspace.conf
\polyspace.conf.

• On a Linux system, /etc/Polyspace/polyspace.conf

To start Polyspace Metrics web server at the command line, use one of these commands:

• Windows: perl matlabroot\toolbox\polyspace\psdistcomp\bin\setup-
polyspace-cluster.pl

• Linux: ./matlabroot/toolbox/polyspace/psdistcomp/bin/setup-
polyspace-cluster

Here, matlabroot is the MATLAB installation folder, for instance, C:\Program Files
\MATLAB\R2018b. For more help in using the commands, use the -h option.

Configure Client Side
Once you have set up your Polyspace metrics server, you must set the client-side settings
so that the Polyspace interface can communicate with your Metrics server.

1 Select Tools > Preferences.
2 Click the Server Configuration tab.
3 Select Use Polyspace Metrics.

Specify this information:

a If you want Polyspace to detect a server on the network that uses port 12427
(default port number), click Automatically detect the Polyspace Metrics
Server.

3 Configure Server for Remote Verification and Polyspace Metrics

3-12

b If you use a different port number for your Metrics server or you want to specify
the server name, click Use the following server and port. Fill in your server
name or IP address, and communication port number.

You must specify the same communication port number for all clients that use
the Polyspace Metrics service.

4 Under the Polyspace Metrics web interface configuration section:

a Specify a Port used to download results, default is 12428. If you change this
port number, you must also change it in on the server side.

b Specify which protocol to use HTTP or HTTPS. If you select HTTPS for your web
protocol, there are additional steps to set up the Metrics web server for HTTPS
on page 3-14.

c Specify a web server port number for your chosen protocol. Default port
numbers are:

• HTTP — 8080
• HTTPS — 8443

If you change the port number from the default, you must configure the same
port number for the Polyspace Metrics server. See “Configure and Start
Polyspace Metrics Server” on page 3-11.

5 Under the Upload and download settings section:

• Upload settings — After you review results from the Metrics repository, you can
upload your comments and justifications back to the repository using Metrics >
Upload to Metrics.

If you want Polyspace to automatically upload your justifications to Polyspace
Metrics when you save, select Upload justifications automatically in the
Polyspace Metrics repository....

• Download settings — In Polyspace Metrics, when you click an item to view,
Polyspace downloads your results and opens them in the Polyspace environment.
Select where to download your Polyspace Metrics results, either:

• To the project folder, or, if a project does not exist, a default folder.
• Ask every time where to download results.

To view Polyspace Metrics, in the address bar of your web browser, enter:

 Set Up Polyspace Metrics

3-13

protocol://ServerName:WSPN

• protocol is http or https.
• ServerName is the name or IP address of your Polyspace Metrics server.
• WSPN is the web server port number, the default is 8080 or 8443.

Configure Web Server for HTTPS
By default, the data transfer between Polyspace Code Prover and the Polyspace Metrics
web interface is not encrypted. You can enable HTTPS for the web protocol, which
encrypts the data transfer. To set up HTTPS, you must change the server configuration
and set up a keystore for the HTTPS certificate.

Before you start the following procedure, you must complete “Configure and Start
Polyspace Metrics Server” on page 3-11 and “Configure Client Side” on page 3-12.

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics and Remote Server Settings dialog box. Run the following
command:

MATLAB_Install\polyspace\bin\polyspace-server-settings.exe
2 Click Stop Daemon. The software stops the mdce and Polyspace Metrics services.

Now, you can make the changes required for HTTPS.
3 Open the file metricsRootFolder\tomcat\conf\server.xml in a text editor.

Here, metricsRootFolder is the name that you specified for Folder where
analysis data will be stored. Look for the following text:

<!-
 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>
->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.
b In the Metrics and Remote Server Settings dialog box, restart the daemon by

clicking Start Daemon.
c Click Stop Daemon to stop the services again so that you can finish setting up

the server for HTTPS.

3 Configure Server for Remote Verification and Polyspace Metrics

3-14

The conf folder is regenerated, including the server.xml file. The file now contains
the text required to configure the HTTPS web server.

4 Follow the commented-out instructions in server.xml to create a keystore for the
HTTPS certificate.

5 In the Metrics and Remote Server Settings dialog box, to restart the Polyspace
Metrics service with the changes, click Start Daemon.

To view Polyspace Metrics, in the address bar of your web browser, enter:

https://ServerName:WSPN

• ServerName is the name or IP address of the Polyspace Metrics server.
• WSPN is the web server port number.

Change Web Server Port Number for Metrics Server
If you change or specify a non-default value for the web server port number of your
Polyspace Code Prover client, you must manually configure the same value for your
Polyspace Metrics server.

1 Select Metrics > Metrics and Remote Server Settings.
2 In the Metrics and Remote Server Settings dialog box, select Stop Daemon to stop

the Polyspace Metrics server daemon.
3 In metricsRootFolder\tomcat\conf\server.xml, edit the port attribute of the

Connector element for your web server protocol. Here, metricsRootFolder is the
name that you specified for Folder where analysis data will be stored when
setting up Polyspace Metrics.

• For HTTP:

<Connector port="8080"/>

• For HTTPS:

 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

4 In the same file, edit the port attribute of the Server element for your web server
protocol.

<Server port="8005" shutdown="SHUTDOWN">

 Set Up Polyspace Metrics

3-15

5 In the Metrics and Remote Server Settings dialog box, select Start Daemon to
restart the server with the new port numbers.

6 On the Polyspace toolbar, select Tools > Preferences.
7 In the Server Configuration tab, change the Web server port number to match

your new value for the port attribute in the Connector element.

See Also

Related Examples
• “Generate Code Quality Metrics”

3 Configure Server for Remote Verification and Polyspace Metrics

3-16

Install Polyspace Plugins

4

Install Polyspace Plugin for Simulink
By default, when you install Polyspace R2013b or later, the Simulink plugin is installed
and connected to MATLAB.

If you model on a previous version of Simulink and MATLAB, you can also connect the
Polyspace plugin on this previous version. That way you use the latest analysis software
with your preferred version of Embedded Coder® or TargetLink®. The Simulink plugin
supports the four previous releases of MATLAB. For example, the R2017b version of the
Polyspace plugin supports MATLAB versions R2015b through R2017b.

If you use a cross-version of Polyspace and MATLAB, local batch analyses can only be
submitted from the Polyspace environment or using the pslinkrun command.

Note To install a newer version of Polyspace on MATLAB R2013b or later, you must
install MATLAB without the corresponding version of Polyspace.

1 Using an account with read/write privileges, open the older version of MATLAB.
2 Use the ver command to make sure you do not have a previous version of Polyspace

installed. See preceding note.
3 Change your Current Folder to

matlabroot\toolbox\polyspace\pslink\pslink

matlabroot is the version of Polyspace you want to connect, for example, C:
\Program Files\MATLAB\R2017b.

4 Connect the new version of Polyspace by running the command
pslinksetup('install').

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

4 Install Polyspace Plugins

4-2

More About
• “Troubleshoot Navigation from Code to Model”

 See Also

4-3

Install Polyspace Plugin for Eclipse
This topic shows how to install or uninstall the Polyspace plugin for Eclipse.

Install Polyspace Plugin for Eclipse IDE
The Polyspace plugin is supported for Eclipse versions 4.3, 4.4, and 4.5. You can install
the Polyspace plugin only after you:

• Install and set up Eclipse Integrated Development Environment (IDE). For more
information, see the Eclipse documentation at www.eclipse.org.

• Install Java® 8 or newer. See Java documentation at www.java.com.

If you run into issues because of incompatible Java versions, see “Eclipse Java Version
Incompatible with Polyspace Plug-in”.

• Uninstall any previous Polyspace plugins. For more information, see “Uninstall
Polyspace Plugin for Eclipse IDE” on page 4-6.

To install the Polyspace plugin:

1 From the Eclipse editor, select Help > Install New Software. The Install wizard
opens, displaying the Available Software page.

2 Click Add to open the Add Repository dialog box.
3 In the Name field, specify a name for your Polyspace site, for example,

Polyspace_Eclipse_PlugIn.
4 Click Local, to open the Browse for Folder dialog box.
5 Navigate to the MATLAB_Install\polyspace\plugin\eclipse folder. Then click

OK.

MATLAB_Install is the installation folder for the Polyspace product.
6 Click OK to close the Add Repository dialog box.
7 On the Available Software page, select Polyspace Plugin for Eclipse.

4 Install Polyspace Plugins

4-4

https://www.eclipse.org/
https://www.java.com/en/

8 Click Next.
9 On the Install Details page, click Next.
10 On the Review Licenses page, review and accept the license agreement. Then click

Finish.

Once you install the plugin, in the Eclipse editor, you’ll see:

• A Polyspace menu
• A Polyspace Run - Code Prover, Results List - Code Prover, and Result Details

view.

 Install Polyspace Plugin for Eclipse

4-5

Uninstall Polyspace Plugin for Eclipse IDE
Before installing a new Polyspace plugin, you must uninstall any previous Polyspace
plugins:

1 In Eclipse, select Help > About Eclipse.
2 Select Installation Details.
3 Select the Polyspace plugin and select Uninstall.

Follow the uninstall wizard to remove the Polyspace plugin. You must restart Eclipse
for changes to take effect.

See Also

More About
• “Run Polyspace Analysis in Eclipse”

4 Install Polyspace Plugins

4-6

Verify Code in IBM Rational
Rhapsody Environment

5

Verify Code in IBM Rational Rhapsody Environment

In this section...
“Code Verification Approach” on page 5-2
“Adding Polyspace Profile to Model” on page 5-3
“Accessing Polyspace Features” on page 5-3
“Configuring Verification Options” on page 5-6
“Running a Verification” on page 5-7
“Viewing Polyspace Results” on page 5-7
“Locating Faulty Code in Rhapsody Model” on page 5-8
“Template Configuration Files” on page 5-9

Note The Polyspace integration with the IBM® Rational Rhapsody environment will be
removed after R2018b. To continue using the latest releases of Polyspace, run code
analysis in the Polyspace user interface or using scripts.

Code Verification Approach
In a collaborative Model-Driven Development (MDD) environment, software run-time
errors can be produced by either design issues in the model or faulty handwritten code.
You may be able to detect the flaws using code reviews and intensive testing. However,
these techniques are time-consuming and expensive.

With Polyspace Code Prover, you can verify C, C++ and Ada code that you generate from
your IBM Rational® Rhapsody® model (up to version 8.0 supported). As a result, you can
detect run-time errors and automatically identify model flaws quickly and early during the
design process.

For information about installing and using IBM Rational Rhapsody, visit the IBM website.

The approach for using Polyspace Code Prover within the IBM Rational Rhapsody MDD
environment is:

• Integrate the Polyspace add-in with your Rhapsody project. See “Adding Polyspace
Profile to Model” on page 5-3.

5 Verify Code in IBM Rational Rhapsody Environment

5-2

• If required, specify Polyspace configuration options in the Polyspace verification
environment. See “Configuring Verification Options” on page 5-6.

• Specify the include path to your operating system (environment) header files and
run verification. See “Running a Verification” on page 5-7.

• View results, analyze errors, and locate faulty code within model. See “Viewing
Polyspace Results” on page 5-7 and “Locating Faulty Code in Rhapsody Model” on
page 5-8.

Adding Polyspace Profile to Model
Before you try to access Polyspace features, you must add the Polyspace profile to your
model. Polyspace is supported for Rhapsody 7.6, 8.0, and 8.1.

Note You cannot submit local batch verifications with Polyspace for Rhapsody (for
example, using local Parallel Computing Toolbox workers). If you want to submit local
batch verifications, use the Polyspace environment or the MATLAB command,
polyspaceCodeProver.

1 In the Rhapsody editor, select File > Add Profile to Model. The Add Profile to
Model dialog box opens.

2 Navigate to the folder MATLAB_Install\polyspace\plugin\rhapsody
\profiles\Polyspace.

3 Select the file Polyspace.sbs. Then click Open.

Now, if you right-click a package or file, you see the Polyspace item in the context menu.
Selecting Polyspace opens the Polyspace Verification dialog box.

Accessing Polyspace Features
To access Polyspace features in the Rhapsody editor:

1 Open the model that you want to verify. For example,
psdemos_uml_link_airbag.rpy in MATLAB_Install/polyspace/plugin/
rhapsody/psdemos.

 Verify Code in IBM Rational Rhapsody Environment

5-3

2 In the Entire Model View, expand the Packages node.
3 Right-click a package, for example, AirBagFiles.
4 From the context menu, select Polyspace.

The Polyspace Verification dialog box opens.

5 Verify Code in IBM Rational Rhapsody Environment

5-4

Through the Polyspace Verification dialog box, you can:

• Specify verification options. See “Configuring Verification Options” on page 5-6.
• Start a verification. See “Running a Verification” on page 5-7.
• Stop a local verification. See “Running a Verification” on page 5-7.
• View verification results. See “Viewing Polyspace Results” on page 5-7.

 Verify Code in IBM Rational Rhapsody Environment

5-5

• Open help.
• Open the Polyspace Job Monitor. See “Running a Verification” on page 5-7.

Configuring Verification Options
To specify options for your verification:

1 In the Entire Model View, right-click a package or class, for example,
AirbagControl.

2 From the context menu, select Polyspace.
3 In the Polyspace Verification dialog box, click Configure. The Configuration pane of

the Polyspace verification environment opens.
4 Select options for your verification. In particular, you must specify the following:

• Target & Compiler > Compiler (-compiler)
• Target & Compiler > Environment Settings > Include (-include) — Path to

your operating system (environment) header files.
• Distributed Computing > Batch (-include) — For local verification, clear the

check box. For remote verification, select the check box.
5 To save your options, on the toolbar, click .

For information on how to choose your options, see “Analysis Options”.

5 Verify Code in IBM Rational Rhapsody Environment

5-6

Running a Verification
Before starting a verification, make sure that the generated code for the model is up to
date.

To start a verification:

1 In the Rhapsody editor, select Tools > Polyspace. The Polyspace Verification dialog
box opens.

2 In the Results folder field, specify a location for your verification results.
3 Select the Verification mode. Click Class or File. If you click Class, from the Class

to verify drop-down list, select a specific class. In addition, under Verify with
(highlight classes), you can select other classes from the displayed list.

4 If you want to run the analysis on your Polyspace server, select Send to Polyspace
server.

Note If you are performing local batch verification with Polyspace for Rhapsody,
MATLAB Distributed Computing Server, and Parallel Computing Toolbox, you can
only submit local batch analyses from the Polyspace environment or using the
command.

5 Click Run. In the Log view of the Rhapsody editor, you see verification messages.

If your verification is local, you can observe progress in the Log view of the Rhapsody
editor. To stop the local verification, in the Polyspace Verification dialog box, click Stop.

To stop or monitor a batch verification, use the Job Monitor.

Viewing Polyspace Results
To view results from the last local verification:

1 In the Rhapsody editor, select Tools > Polyspace.
2 In the Polyspace Verification dialog box, click Open Results.

The software displays results in the Polyspace user interface.

To view results from remote verifications, use Polyspace Metrics or the Job Monitor.

For more information, see “Review Analysis Results”.

 Verify Code in IBM Rational Rhapsody Environment

5-7

Declarations for C Functions Without Arguments

By default, Rhapsody generates declarations for functions without parameters, using the
form:

void my_function()

rather than:

void my_function(void)

This can result in the following Polyspace compilation error:

Fatal error: function 'my_function' has unknown prototype.

To avoid this problem, in Rhapsody, at the project level, set the property
C_CG::Configuration::EmptyArgumentListName to void.

Locating Faulty Code in Rhapsody Model
To identify the faulty code within your Rhapsody model using Polyspace verification
results:

1 In your verification results, navigate to an error.
2 In the Source pane, right-click the error. From the context menu, select Back To

Model.

Tip For the Back To Model command to work, you must have your Rhapsody model
open.

The Back To Model command works best when the Polyspace check is enclosed by
the tags //#[and]#//.

The software locates the faulty code within your Rhapsody model. Depending on the
Rhapsody configuration, the faulty code appears either in a dialog box or in the code
view.

The 64-bit version of the Polyspace product supports the Back To Model command
only for version 8.0 of the IBM Rational Rhapsody product. For other versions, use
the 32-bit Polyspace version.

5 Verify Code in IBM Rational Rhapsody Environment

5-8

To install the 32-bit Polyspace version, from a DOS command window, run the
following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Template Configuration Files
• “Using Template Configuration Files” on page 5-9
• “Default Configuration Options” on page 5-9

Using Template Configuration Files

The first time you perform a verification, the software copies a template, Polyspace
configuration file, from matlabroot/polyspace/plugin/rhapsody/etc/
template_language.psprj to the project folder. The software also renames the copy
model_language.psprj, where:

• model is the name of your model.
• language is the name of the language that the model targets, that is, C or C++.

You can update the template .psprj file by one of the following means:

• Editing it through the Polyspace verification environment
• Double-clicking the file in a Windows Explorer window
• Replacing the template file with a copy of the .psprj file from a Rhapsody model

folder

You can then share a configuration among project members and use the configuration
with other projects.

Default Configuration Options

The template_language.psprj XML files specify the default option values for code
verification.

The file template_C.psprj is:
<?xml version="1.0" encoding="UTF-8"?>
<polyspace_project name="template_psprj" language="C" author="polyspace"
version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common
/Rhapsody/PolyspaceUMLLink/etc/template_C.psprj">
 <source>
 </source>

 Verify Code in IBM Rational Rhapsody Environment

5-9

 <include>
 </include>
 <module name="Verification_1" isactive="true">
 <source>
 </source>
 <optionset name="template_psprj" isactive="true">
 <option flagname="-respect-types-in-fields">true</option>
 <option flagname="-respect-types-in-globals">true</option>
 </optionset>
 </module>
</polyspace_project>

The file template_C++.psprj is:
<?xml version="1.0" encoding="UTF-8"?>
<polyspace_project name="template_psprj" language="C++" author="polyspace"
version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common
/Rhapsody/PolyspaceUMLLink/etc/template_C++.psprj">
 <source>
 </source>
 <include>
 </include>
 <module name="Verification_1" isactive="true">
 <source>
 </source>
 <optionset name="template_psprj" isactive="true">
 <option flagname="-D">[OM_NO_FRAMEWORK_MEMORY_MANAGER]</option>
 <option flagname="-dialect">gnu</option>
 <option flagname="-respect-types-in-fields">true</option>
 <option flagname="-respect-types-in-globals">true</option>
 <option flagname="-target">i386</option>
 </optionset>
 </module>
</polyspace_project>

5 Verify Code in IBM Rational Rhapsody Environment

5-10

Polyspace Bug Finder and
Polyspace Code Prover

6

Choose Between Polyspace Bug Finder and Polyspace
Code Prover

Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static
analysis. Though the products have a similar user interface and the mathematics
underlying the analysis can sometimes be the same, the goals of the two products are
different.

Bug Finder quickly analyzes your code and detects many types of defects. Code Prover
checks every operation in your code for a set of possible run-time errors and tries to
prove the absence of the error for all execution paths2. For instance, for every division in
your code, a Code Prover analysis tries to prove that the denominator cannot be zero. Bug
Finder does not perform such exhaustive verification. For instance, Bug Finder also
checks for a division by zero error, but it might not find all operations that can cause the
error.

The two products involve differences in setup, analysis and results review, because of this
difference in objectives. In the following sections, we highlight the primary differences
between a Bug Finder and a Code Prover analysis (also known as verification). Depending
on your requirements, you can incorporate one or both kinds of analyses at appropriate
points in your software development life cycle.

How Bug Finder and Code Prover Complement Each Other
• “Overview” on page 6-3
• “Faster Analysis with Bug Finder” on page 6-3
• “More Exhaustive Verification with Code Prover” on page 6-3
• “More Specific Defect Types with Bug Finder” on page 6-4
• “Easier Setup Process with Bug Finder” on page 6-5
• “Fewer Runs for Clean Code with Bug Finder” on page 6-5
• “Results in Real Time with Bug Finder” on page 6-6
• “More Rigorous Data and Control Flow Analysis with Code Prover” on page 6-6
• “Few False Positives with Bug Finder” on page 6-8

2. For each operation in your code, Code Prover considers all execution paths leading to the operation that
do not have a previous error. If an execution path contains an error prior to the operation, Code Prover
does not consider it. See “Code Prover Analysis Following Red and Orange Checks”.

6 Polyspace Bug Finder and Polyspace Code Prover

6-2

• “Zero False Negatives with Code Prover” on page 6-8

Overview

Use both Bug Finder and Code Prover regularly in your development process. The
products provide a unique set of capabilities and complement each other. For possible
ways to use the products together, see “Workflow Using Both Bug Finder and Code
Prover” on page 6-8.

This table provides an overview of how the products complement each other. For details,
see the sections below.

Feature Bug Finder Code Prover
Number of checkers 244 28 (Critical subset)
Depth of analysis Fast.

For instance:

• Faster analysis.
• Easier set up and review.
• Fewer runs for clean

code.
• Results in real time.

Exhaustive.

For instance:

• All operations of a type
checked for certain
critical errors.

• More rigorous data and
control flow analysis.

Reporting criteria Probable defects Proven findings
Bug finding criteria Few false positives Zero false negatives

Faster Analysis with Bug Finder

How much faster the Bug Finder analysis is depends on the size of the application. The
Bug Finder analysis time increases linearly with the size of the application. The Code
Prover verification time increases at a rate faster than linear.

One possible workflow is to run Code Prover to analyze modules or libraries for
robustness against certain errors and run Bug Finder at integration stage. Bug Finder
analysis on large code bases can be completed in a much shorter time, and also find
integration defects such as Declaration mismatch and Data race.

More Exhaustive Verification with Code Prover

Code Prover tries to prove the absence of:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

6-3

• Division by Zero error on every division or modulus operation
• Out of Bounds Array Index error on every array access
• Non-initialized Variable error on every variable read
• Overflow error on every operation that can overflow

and so on.

For each operation:

• If Code Prover can prove the absence of the error for all execution paths, it highlights
the operation in green.

• If Code Prover can prove the presence of a definite error for all execution paths, it
highlights the operation in red.

• If Code Prover cannot prove the absence of an error or presence of a definite error, it
highlights the operation in orange. This small percentage of orange checks indicate
operations that you must review carefully, through visual inspection or testing. The
orange checks often indicate hidden vulnerabilities. For instance, the operation might
be safe in the current context but fail when reused in another context.

You can use information provided in the Polyspace user interface to diagnose the
checks. See “More Rigorous Data and Control Flow Analysis with Code Prover” on
page 6-6. You can also provide contextual information to reduce unproven code even
further, for instance, constrain input ranges externally.

Bug Finder does not aim for exhaustive analysis. It tries to detect as many bugs as
possible and reduce false positives. For critical software components, running a bug
finding tool is not sufficient because despite fixing all defects found in the analysis, you
can still have errors during code execution (false negatives). After running Code Prover
on your code and addressing the issues found, you can expect the quality of your code to
be much higher. See “Zero False Negatives with Code Prover” on page 6-8.

More Specific Defect Types with Bug Finder

Code Prover checks for types of run-time errors where it is possible to mathematically
prove the absence of the error. In addition to detecting errors whose absence can be
mathematically proven, Bug Finder also detects other defects.

For instance, the statement if(a=b) is semantically correct according to the C language
standard, but often indicates an unintended assignment. Bug Finder detects such
unintended operations. Although Code Prover does not detect such unintended
operations, it can detect if an unintended operation causes other run-time errors.

6 Polyspace Bug Finder and Polyspace Code Prover

6-4

Examples of defects detected by Bug Finder but not by Code Prover include good practice
defects (Polyspace Bug Finder), resource management defects (Polyspace Bug Finder),
some programming defects (Polyspace Bug Finder), security defects (Polyspace Bug
Finder), and defects in C++ object oriented design (Polyspace Bug Finder).

For more information, see:

• “Defects” (Polyspace Bug Finder): List of defects that Bug Finder can detect.
• “Run-Time Checks”: List of run-time errors that Code Prover can detect.

Easier Setup Process with Bug Finder

Even if your code builds successfully in your compilation toolchain, it can fail in the
compilation phase of a Code Prover verification. The strict compilation in Code Prover is
related to its ability to prove the absence of certain run-time errors.

• Code Prover strictly follows the ANSI® C99 Standard, unless you explicitly use
analysis options that emulate your compiler.

To allow deviations from the ANSI C99 Standard, you must use the options. If you
create a Polyspace project from your build system, the options are automatically set.

• Code Prover does not allow linking errors that common compilers can permit.

Though your compiler permits linking errors such as mismatch in function signature
between compilation units, to avoid unexpected behavior at run time, you must fix the
errors.

For more information, see “Troubleshoot Compilation and Linking Errors”.

Bug Finder is less strict about certain compilation errors. Linking errors, such as
mismatch in function signature between different compilation units, can stop a Code
Prover verification but not a Bug Finder analysis. Therefore, you can run a Bug Finder
analysis with less setup effort. In Bug Finder, linking errors are often reported as a defect
after the analysis is complete.

Fewer Runs for Clean Code with Bug Finder

To guarantee absence of certain run-time errors, Code Prover follows strict rules once it
detects a run-time error in an operation. Once a run-time error occurs, the state of your
program is ill-defined and Code Prover cannot prove the absence of errors in subsequent
code. Therefore:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

6-5

• If Code Prover proves a definite error and displays a red check, it does not verify the
remaining code in the same block.

Exceptions include checks such as Overflow, where the analysis continues with the
result of overflow either truncated or wrapped around.

• If Code Prover suspects the presence of an error and displays an orange check, it
eliminates the path containing the error from consideration. For instance, if Code
Prover detects a Division by Zero error in the operation 1/x, in the subsequent
operation on x in that block, x cannot be zero.

• If Code Prover detects that a code block is unreachable and displays a gray check, it
does not detect errors in that block.

For more information, see “Code Prover Analysis Following Red and Orange Checks”.

Therefore, once you fix red and gray checks and rerun verification, you can find more
issues. You need to run verification several times and fix issues each time for completely
clean code. The situation is similar to dynamic testing. In dynamic testing, once you fix a
failure at a certain point in the code, you can uncover a new failure in subsequent code.

Bug Finder does not stop the entire analysis in a block after it finds a defect in that block.
Even with Bug Finder, you might have to run analysis several times to obtain completely
clean code. However, the number of runs required is fewer than Code Prover.

Results in Real Time with Bug Finder

Bug Finder shows some analysis results while the analysis is still running. You do not
have to wait until the end of the analysis to review the results.

Code Prover shows results only after the end of the verification. Once Bug Finder finds a
defect, it can display the defect. Code Prover has to prove the absence of errors on all
execution paths. Therefore, it cannot display results during analysis.

More Rigorous Data and Control Flow Analysis with Code Prover

For each operation in your code, Code Prover provides:

• Tooltips showing the range of values of each variable in the operation.

For a pointer, the tooltips show the variable that the pointer points to, along with the
variable values.

• Graphical representation of the function call sequence that leads to the operation.

6 Polyspace Bug Finder and Polyspace Code Prover

6-6

By using this range information and call graph, you can easily navigate the function call
hierarchy and understand how a variable acquires values that lead to an error. For
instance, for an Out of Bounds Array Index error, you can find where the index variable
is first assigned values that lead to the error.

When reviewing a result in Bug Finder, you also have supporting information to
understand the root cause of a defect. For instance, you have a traceback from where Bug
Finder found a defect to its root cause. However, in Code Prover, you have more complete
information, because the information helps you understand all execution paths in your
code.

Data Flow Analysis in Code Prover

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

6-7

Control Flow Analysis in Code Prover

Few False Positives with Bug Finder

Bug Finder aims for few false positives, that is, results that you are not likely to fix. By
default, you are shown only the defects that are likely to be most meaningful for you.

Bug Finder also assigns an attribute called impact to the defect types based on the
criticality of the defect and the rate of false positives. You can choose to analyze your
code only for high-impact defects. You can also enable or disable a defect that you do not
want to review3.

Zero False Negatives with Code Prover

Code Prover aims for an exhaustive analysis. The software checks every operation that
can trigger specific types of error. If a code operation is green, it means that the
operation cannot cause those run-time errors that the software checked for4. In this way,
the software aims for zero false negatives.

If the software cannot prove the absence of an error, it highlights the suspect operation in
red or orange and requires you to review the operation.

Workflow Using Both Bug Finder and Code Prover
If you have both Bug Finder and Code Prover, based on the above differences, you can
deploy the two products appropriately in your software development workflow. For
instance:

3. You can also disable certain Code Prover defects related to non-initialization.
4. The Code Prover result holds only if you execute your code under the same conditions that you supplied

to Code Prover through the analysis options.

6 Polyspace Bug Finder and Polyspace Code Prover

6-8

• All developers in your organization can run Bug Finder on newly developed code. For
maintaining standards across your organization, you can deploy a common
configuration that looks only for specific defect types.

Code Prover can be deployed as part of your unit testing suite.
• You can run Code Prover only on critical components of your project, while running

Bug Finder on the entire project.
• You can run Code Prover on modules of code at the unit testing level, and run Bug

Finder when integrating the modules.

You can run Code Prover before unit testing. Code Prover exhaustively checks your
code and tries to prove the presence or absence of errors. Instead of writing unit tests
for your entire code, you can then write tests only for unproven code. Using Code
Prover before unit testing reduces your testing efforts drastically.

Depending on the nature of your software development workflow and available resources,
there are many other ways you can incorporate the two kinds of analysis. You can run
both products on your desktop during development or as part of automated testing on a
remote server. Note that it is easier to interpret and fix bugs closer to development. You
will benefit from using both products if you deploy them early and often in your
development process.

There are two important considerations if you are running both Bug Finder and Code
Prover on the same code.

• Both products can detect violations of coding rules such as MISRA C rules and JSF C+
+ rules.

However, if you want to detect MISRA C:2012 coding rule violations alone, use Bug
Finder. Bug Finder supports all the MISRA C:2012 coding rules. Code Prover does not
support a few rules.

• If a result is found in both a Bug Finder and Code Prover analysis, you can comment
on the Bug Finder result and import the comment to Code Prover.

For instance, most coding rule checkers are common to Bug Finder and Code Prover.
You can add comments to coding rule violations in Bug Finder and import the
comments to the same violations in Code Prover. To import comments, open your
result set and select Tools > Import Comments.

• You can use the same project for both Bug Finder and Code Prover analysis. The
following set of options are common between Bug Finder and Code Prover:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

6-9

• “Target and Compiler”
• “Macros”
• “Environment Settings”
• “Inputs and Stubbing”
• “Multitasking”
• “Coding Rules & Code Metrics”
• “Reporting”, except Bug Finder and Code Prover report (-report-

template)

You might have to change more of the default options when you run the Code Prover
verification because Code Prover is stricter about compilation and linking errors.

6 Polyspace Bug Finder and Polyspace Code Prover

6-10

